Using Empirical Mode Decomposition of Backscattered Ultrasound Signal Power Spectrum for Assessment of Tissue Compression
نویسندگان
چکیده
Quantitative ultrasound has been widely used for tissue characterization. In this paper we propose a new approach compression assessment. The proposed method employs the relation between scatterers’ local spatial distribution and resulting frequency power spectrum of backscattered ultrasonic signal. We show that due to scatterers, exhibits characteristic variations. These variations can be extracted using empirical mode decomposition analyzed. Validation our is performed by simulations in-vitro experiments sample under compression. scatterers in compressed each other consequently, signal modified. present how assess phenomenon with method. general may provide useful information on scattering properties.
منابع مشابه
assessment of the efficiency of s.p.g.c refineries using network dea
data envelopment analysis (dea) is a powerful tool for measuring relative efficiency of organizational units referred to as decision making units (dmus). in most cases dmus have network structures with internal linking activities. traditional dea models, however, consider dmus as black boxes with no regard to their linking activities and therefore do not provide decision makers with the reasons...
Empirical Mode Decomposition for Eeg Signal Analysis
Electroencephalogram (EEG) is used to record electrical activity of brain. Human brain is fascinated by the different idea of thoughts and feelings generated from external and internal stimuli. Feature extraction and classification of EEG signal plays an important role in diagnosis of various brain diseases and mental tasks. In this paper, powerful technique of empirical mode decomposition (EMD...
متن کاملPartial Discharge Signal Denoising Using the Empirical Mode Decomposition
This paper presents the findings of an investigation into Partial Discharge signal denoising using techniques based on Empirical Mode Decomposition. The denoising techniques are based on thresholding the Intrinsic Mode Functions which result from the Empirical Mode Decomposition of a signal. The results of the tests carried out show clearly that these techniques can produce excellent results wh...
متن کاملSignal Denoising Using Empirical Mode Decomposition and Higher Order Statistics
A hybrid denoising method is presented as a combination of Empirical Mode Decomposition (EMD) and Higher Order Statistics (HOS). EMD, an adaptive data-driven method, is used for effective decomposition of a noisy signal into its functional components. Then Kurtosis and Bispectrum operate as Gaussianity estimators, supplemented by Bootstrap techniques, ensuring detection and removal of the signa...
متن کاملSignal Detection in Underwater Sound Using the Empirical Mode Decomposition
In this article, the empirical mode decomposition (EMD) is introduced to the problem of signal detection in underwater sound. EMD is a new method pioneered by Huang et al. for non-linear and nonstationary signal analysis. Based on the EMD, any input data can be decomposed into a small number of intrinsic mode functions (IMFs) which can serve as the basis of non-stationary data for they are comp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Archives of Acoustics
سال: 2023
ISSN: ['2300-262X', '0137-5075']
DOI: https://doi.org/10.24425/123916